Guidance
指路人
g.yi.org
software / RapidQ / System / Win32 / RapidQ2 distribution / CMD5.inc

Register 
注册
Search 搜索
首页 
Home Home
Software
Upload

  
'VERSION 1.0 CLASS
'BEGIN
'  MultiUse = -1  'True
'  Persistable = 0  'NotPersistable
'  DataBindingBehavior = 0  'vbNone
'  DataSourceBehavior  = 0  'vbNone
'  MTSTransactionMode  = 0  'NotAnMTSObject
'END
'Attribute VB_Name = "CMD5"
'Attribute VB_GlobalNameSpace = False
'Attribute VB_Creatable = True
'Attribute VB_PredeclaredId = False
'Attribute VB_Exposed = False
'*******************************************************************************
' MODULE:       CMD5
' FILENAME:     C:\My Code\vb\md5\CMD5.cls
' AUTHOR:       Phil Fresle
' CREATED:      16-Feb-2001
' COPYRIGHT:    Copyright 2001 Frez Systems Limited. All Rights Reserved.
'
' DESCRIPTION:
' Derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm,
' as set out in the memo RFC1321.
'
' This class is used to generate an MD5 'digest' or 'signature' of a string. The
' MD5 algorithm is one of the industry standard methods for generating digital
' signatures. It is generically known as a digest, digital signature, one-way
' encryption, hash or checksum algorithm. A common use for MD5 is for password
' encryption as it is one-way in nature, that does not mean that your passwords
' are not free from a dictionary attack. If you are using the
' routine for passwords, you can make it a little more secure by concatenating
' some known random characters to the password before you generate the signature
' and on subsequent tests, so even if a hacker knows you are using MD5 for
' your passwords, the random characters will make it harder to dictionary attack.
'
' *** CAUTION ***
' See the comment attached to the MD5 method below regarding use on systems
' with different character sets.
'
' This is 'free' software with the following restrictions:
'
' You may not redistribute this code as a 'sample' or 'demo'. However, you are free
' to use the source code in your own code, but you may not claim that you created
' the sample code. It is expressly forbidden to sell or profit from this source code
' other than by the knowledge gained or the enhanced value added by your own code.
'
' Use of this software is also done so at your own risk. The code is supplied as
' is without warranty or guarantee of any kind.
'
' Should you wish to commission some derivative work based on this code provided
' here, or any consultancy work, please do not hesitate to contact us.
'
' Web Site:  http://www.frez.co.uk
' E-mail:    sales@frez.co.uk
'
' MODIFICATION HISTORY:
' 1.0       16-Feb-2001
'           Phil Fresle
'           Initial Version
'*******************************************************************************
'Option Explicit

     $OPTION WEAKTYPE ON
     $OPTION VBDLL    ON

     Private CONST BITS_TO_A_BYTE  AS LONG = 8
     Private CONST BYTES_TO_A_WORD AS LONG = 4
     Private CONST BITS_TO_A_WORD  AS LONG = 4 * 8

     DIM m_lOnBits(0 TO 30) AS LONG
     DIM m_l2Power(0 TO 30) AS LONG
'DIM TEMP AS LONG

'*******************************************************************************
' Class_Initialize (SUB)
'
' DESCRIPTION:
' We will usually get quicker results by preparing arrays of bit patterns and
' powers of 2 ahead of time instead of calculating them every time, unless of
' course the methods are only ever getting called once per instantiation of the
' class.
'*******************************************************************************
'Private Sub Class_Initialize()
    ' Could have done this with a loop calculating each value, but simply
    ' assigning the values is quicker - BITS SET FROM RIGHT
     m_lOnBits(0) = 1            ' 00000000000000000000000000000001
     m_lOnBits(1) = 3            ' 00000000000000000000000000000011
     m_lOnBits(2) = 7            ' 00000000000000000000000000000111
     m_lOnBits(3) = 15           ' 00000000000000000000000000001111
     m_lOnBits(4) = 31           ' 00000000000000000000000000011111
     m_lOnBits(5) = 63           ' 00000000000000000000000000111111
     m_lOnBits(6) = 127          ' 00000000000000000000000001111111
     m_lOnBits(7) = 255          ' 00000000000000000000000011111111
     m_lOnBits(8) = 511          ' 00000000000000000000000111111111
     m_lOnBits(9) = 1023         ' 00000000000000000000001111111111
     m_lOnBits(10) = 2047        ' 00000000000000000000011111111111
     m_lOnBits(11) = 4095        ' 00000000000000000000111111111111
     m_lOnBits(12) = 8191        ' 00000000000000000001111111111111
     m_lOnBits(13) = 16383       ' 00000000000000000011111111111111
     m_lOnBits(14) = 32767       ' 00000000000000000111111111111111
     m_lOnBits(15) = 65535       ' 00000000000000001111111111111111
     m_lOnBits(16) = 131071      ' 00000000000000011111111111111111
     m_lOnBits(17) = 262143      ' 00000000000000111111111111111111
     m_lOnBits(18) = 524287      ' 00000000000001111111111111111111
     m_lOnBits(19) = 1048575     ' 00000000000011111111111111111111
     m_lOnBits(20) = 2097151     ' 00000000000111111111111111111111
     m_lOnBits(21) = 4194303     ' 00000000001111111111111111111111
     m_lOnBits(22) = 8388607     ' 00000000011111111111111111111111
     m_lOnBits(23) = 16777215    ' 00000000111111111111111111111111
     m_lOnBits(24) = 33554431    ' 00000001111111111111111111111111
     m_lOnBits(25) = 67108863    ' 00000011111111111111111111111111
     m_lOnBits(26) = 134217727   ' 00000111111111111111111111111111
     m_lOnBits(27) = 268435455   ' 00001111111111111111111111111111
     m_lOnBits(28) = 536870911   ' 00011111111111111111111111111111
     m_lOnBits(29) = 1073741823  ' 00111111111111111111111111111111
     m_lOnBits(30) = 2147483647  ' 01111111111111111111111111111111

    ' Could have done this with a loop calculating each value, but simply
    ' assigning the values is quicker - POWERS OF 2
     m_l2Power(0) = 1            ' 00000000000000000000000000000001
     m_l2Power(1) = 2            ' 00000000000000000000000000000010
     m_l2Power(2) = 4            ' 00000000000000000000000000000100
     m_l2Power(3) = 8            ' 00000000000000000000000000001000
     m_l2Power(4) = 16           ' 00000000000000000000000000010000
     m_l2Power(5) = 32           ' 00000000000000000000000000100000
     m_l2Power(6) = 64           ' 00000000000000000000000001000000
     m_l2Power(7) = 128          ' 00000000000000000000000010000000
     m_l2Power(8) = 256          ' 00000000000000000000000100000000
     m_l2Power(9) = 512          ' 00000000000000000000001000000000
     m_l2Power(10) = 1024        ' 00000000000000000000010000000000
     m_l2Power(11) = 2048        ' 00000000000000000000100000000000
     m_l2Power(12) = 4096        ' 00000000000000000001000000000000
     m_l2Power(13) = 8192        ' 00000000000000000010000000000000
     m_l2Power(14) = 16384       ' 00000000000000000100000000000000
     m_l2Power(15) = 32768       ' 00000000000000001000000000000000
     m_l2Power(16) = 65536       ' 00000000000000010000000000000000
     m_l2Power(17) = 131072      ' 00000000000000100000000000000000
     m_l2Power(18) = 262144      ' 00000000000001000000000000000000
     m_l2Power(19) = 524288      ' 00000000000010000000000000000000
     m_l2Power(20) = 1048576     ' 00000000000100000000000000000000
     m_l2Power(21) = 2097152     ' 00000000001000000000000000000000
     m_l2Power(22) = 4194304     ' 00000000010000000000000000000000
     m_l2Power(23) = 8388608     ' 00000000100000000000000000000000
     m_l2Power(24) = 16777216    ' 00000001000000000000000000000000
     m_l2Power(25) = 33554432    ' 00000010000000000000000000000000
     m_l2Power(26) = 67108864    ' 00000100000000000000000000000000
     m_l2Power(27) = 134217728   ' 00001000000000000000000000000000
     m_l2Power(28) = 268435456   ' 00010000000000000000000000000000
     m_l2Power(29) = 536870912   ' 00100000000000000000000000000000
     m_l2Power(30) = 1073741824  ' 01000000000000000000000000000000
'End Sub

'*******************************************************************************
' LShift (FUNCTION)
'
' PARAMETERS:
' (In) - lValue     - Long    - The value to be shifted
' (In) - iShiftBits - Integer - The number of bits to shift the value by
'
' RETURN VALUE:
' Long - The shifted long integer
'
' DESCRIPTION:
' A left shift takes all the set binary bits and moves them left, in-filling
' with zeros in the vacated bits on the right. This function is equivalent to
' the << operator in Java and C++
'*******************************************************************************
     Private FUNCTION LShift(BYVAL lValue AS LONG, _
      BYVAL iShiftBits AS INTEGER) AS LONG
     DEFLNG TEMP = 0
    ' NOTE: If you can guarantee that the Shift parameter will be in the
    ' range 1 to 30 you can safely strip of this first nested if structure for
    ' speed.
    '
    ' A shift of zero is no shift at all.
     IF iShiftBits = 0 THEN
      TEMP = lValue
      result = TEMP
      EXIT FUNCTION

    ' A shift of 31 will result in the right most bit becoming the left most
    ' bit and all other bits being cleared
     ELSEIF iShiftBits = 31 THEN
      IF lValue AND 1 THEN
       TEMP = &H80000000
      ELSE
       TEMP = 0
      END IF
      result = TEMP
      EXIT FUNCTION

    ' A shift of less than zero or more than 31 is undefined
     ELSEIF iShiftBits < 0 OR iShiftBits > 31 THEN
        'Err.Raise 6                                                        'TODO
     END IF

    ' If the left most bit that remains will end up in the negative bit
    ' position (&H80000000) we would end up with an overflow if we took the
    ' standard route. We need to strip the left most bit and add it back
    ' afterwards.
     IF (lValue AND m_l2Power(31 - iShiftBits)) THEN

        ' (Value And OnBits(31 - (Shift + 1))) chops off the left most bits that
        ' we are shifting into, but also the left most bit we still want as this
        ' is going to end up in the negative bit marker position (&H80000000).
        ' After the multiplication/shift we Or the result with &H80000000 to
        ' turn the negative bit on.
      TEMP = ((lValue AND m_lOnBits(31 - (iShiftBits + 1))) * _
       m_l2Power(iShiftBits)) OR &H80000000

     ELSE

        ' (Value And OnBits(31-Shift)) chops off the left most bits that we are
        ' shifting into so we do not get an overflow error when we do the
        ' multiplication/shift
      TEMP = ((lValue AND m_lOnBits(31 - iShiftBits)) * _
       m_l2Power(iShiftBits))

     END IF
     result = TEMP
     END FUNCTION

'*******************************************************************************
' RShift (FUNCTION)
'
' PARAMETERS:
' (In) - lValue     - Long    - The value to be shifted
' (In) - iShiftBits - Integer - The number of bits to shift the value by
'
' RETURN VALUE:
' Long - The shifted long integer
'
' DESCRIPTION:
' The right shift of an unsigned long integer involves shifting all the set bits
' to the right and in-filling on the left with zeros. This function is
' equivalent to the >>> operator in Java or the >> operator in C++ when used on
' an unsigned long.
'*******************************************************************************

     Private FUNCTION RShift(BYVAL lValue AS LONG, _
      BYVAL iShiftBits AS INTEGER) AS LONG

     DEFLNG TEMP = 0
    ' NOTE: If you can guarantee that the Shift parameter will be in the
    ' range 1 to 30 you can safely strip of this first nested if structure for
    ' speed.
    '
    ' A shift of zero is no shift at all
     IF iShiftBits = 0 THEN
      TEMP = lValue
      result = TEMP
      EXIT FUNCTION

    ' A shift of 31 will clear all bits and move the left most bit to the right
    ' most bit position
     ELSEIF iShiftBits = 31 THEN
      IF lValue AND &H80000000 THEN
       TEMP = 1
      ELSE
       TEMP = 0
      END IF
      result = TEMP
      EXIT FUNCTION

    ' A shift of less than zero or more than 31 is undefined
     ELSEIF iShiftBits < 0 OR iShiftBits > 31 THEN
        'Err.Raise 6
     END IF

    ' We do not care about the top most bit or the final bit, the top most bit
    ' will be taken into account in the next stage, the final bit (whether it
    ' is an odd number or not) is being shifted into, so we do not give a jot
    ' about it
     TEMP = (lValue AND &H7FFFFFFE) \ m_l2Power(iShiftBits)
    ' If the top most bit (&H80000000) was set we need to do things differently
    ' as in a normal VB signed long integer the top most bit is used to indicate
    ' the sign of the number, when it is set it is a negative number, so just
    ' deviding by a factor of 2 as above would not work.
    ' NOTE: (lValue And  &H80000000) is equivalent to (lValue < 0), you could
    ' get a very marginal speed improvement by changing the test to (lValue < 0)
     IF (lValue AND &H80000000) THEN
        ' We take the value computed so far, and then add the left most negative
        ' bit after it has been shifted to the right the appropriate number of
        ' places


      TEMP = (TEMP OR (&H40000000 \ m_l2Power(iShiftBits - 1)))
     END IF
     result = TEMP
     END FUNCTION

'*******************************************************************************
' RShiftSigned (FUNCTION)
'
' PARAMETERS:
' (In) - lValue     - Long    -
' (In) - iShiftBits - Integer -
'
' RETURN VALUE:
' Long -
'
' DESCRIPTION:
' The right shift of a signed long integer involves shifting all the set bits to
' the right and in-filling on the left with the sign bit (0 if positive, 1 if
' negative. This function is equivalent to the >> operator in Java or the >>
' operator in C++ when used on a signed long integer. Not used in this class,
' but included for completeness.
'*******************************************************************************
     Private FUNCTION RShiftSigned(BYVAL lValue AS LONG, _
      BYVAL iShiftBits AS INTEGER) AS LONG

     DEFLNG TEMP = 0
    ' NOTE: If you can guarantee that the Shift parameter will be in the
    ' range 1 to 30 you can safely strip of this first nested if structure for
    ' speed.
    '
    ' A shift of zero is no shift at all
     IF iShiftBits = 0 THEN
      TEMP = lValue
      result = TEMP
      EXIT FUNCTION

    ' A shift of 31 will clear all bits if the left most bit was zero, and will
    ' set all bits if the left most bit was 1 (a negative indicator)
     ELSEIF iShiftBits = 31 THEN

        ' NOTE: (lValue And  &H80000000) is equivalent to (lValue < 0), you
        ' could get a very marginal speed improvement by changing the test to
        ' (lValue < 0)
      IF (lValue AND &H80000000) THEN
       TEMP = -1
      ELSE
       TEMP = 0
      END IF
      result = TEMP
      EXIT FUNCTION

    ' A shift of less than zero or more than 31 is undefined
     ELSEIF iShiftBits < 0 OR iShiftBits > 31 THEN
        'Err.Raise 6
     END IF

    ' We get the same result by dividing by the appropriate power of 2 and
    ' rounding in the negative direction
     TEMP = INT(lValue / m_l2Power(iShiftBits))
     result = TEMP
     END FUNCTION

'*******************************************************************************
' RotateLeft (FUNCTION)
'
' PARAMETERS:
' (In) - lValue     - Long    - Value to act on
' (In) - iShiftBits - Integer - Bits to move by
'
' RETURN VALUE:
' Long - Result
'
' DESCRIPTION:
' Rotates the bits in a long integer to the left, those bits falling off the
' left edge are put back on the right edge
'*******************************************************************************
     Private FUNCTION RotateLeft(BYVAL lValue AS LONG, _
      BYVAL iShiftBits AS INTEGER) AS LONG
     result = LShift(lValue, iShiftBits) OR RShift(lValue, (32 - iShiftBits))
     END FUNCTION

'*******************************************************************************
' AddUnsigned (FUNCTION)
'
' PARAMETERS:
' (In) - lX - Long - First value
' (In) - lY - Long - Second value
'
' RETURN VALUE:
' Long - Result
'
' DESCRIPTION:
' Adds two potentially large unsigned numbers without overflowing
'*******************************************************************************
     Private FUNCTION AddUnsigned(BYVAL lX AS LONG, _
      BYVAL lY AS LONG) AS LONG
     DIM lX4     AS LONG
     DIM lY4     AS LONG
     DIM lX8     AS LONG
     DIM lY8     AS LONG
     DIM lResult AS LONG

     lX8 = lX AND &H80000000
     lY8 = lY AND &H80000000
     lX4 = lX AND &H40000000
     lY4 = lY AND &H40000000

     lResult = (lX AND &H3FFFFFFF) + (lY AND &H3FFFFFFF)

     IF lX4 > 0 AND lY4 > 0 THEN
      lResult = lResult XOR &H80000000 XOR lX8 XOR lY8
     ELSEIF lX4 OR lY4 THEN
      IF (lResult AND &H40000000) > 0 THEN
       lResult = lResult XOR &HC0000000 XOR lX8 XOR lY8
      ELSE
       lResult = lResult XOR &H40000000 XOR lX8 XOR lY8
      END IF
     ELSE
      lResult = lResult XOR lX8 XOR lY8
     END IF

     result = lResult
     END FUNCTION

'*******************************************************************************
' F (FUNCTION)
'
' DESCRIPTION:
' MD5's F function
'*******************************************************************************
     Private FUNCTION F(BYVAL x AS LONG, _
      BYVAL y AS LONG, _
      BYVAL z AS LONG) AS LONG
     F = (x AND y) OR ((NOT x) AND z)
     END FUNCTION

'*******************************************************************************
' G (FUNCTION)
'
' DESCRIPTION:
' MD5's G function
'*******************************************************************************
     Private FUNCTION G(BYVAL x AS LONG, _
      BYVAL y AS LONG, _
      BYVAL z AS LONG) AS LONG
     G = (x AND z) OR (y AND (NOT z))
     END FUNCTION

'*******************************************************************************
' H (FUNCTION)
'
' DESCRIPTION:
' MD5's H function
'*******************************************************************************
     Private FUNCTION H(BYVAL x AS LONG, _
      BYVAL y AS LONG, _
      BYVAL z AS LONG) AS LONG
     H = (x XOR y XOR z)
     END FUNCTION

'*******************************************************************************
' MD5I (FUNCTION)
'
' DESCRIPTION:
' MD5's I function
'*******************************************************************************
     Private FUNCTION MD5I(BYVAL x AS LONG, _
      BYVAL y AS LONG, _
      BYVAL z AS LONG) AS LONG
     MD5I = (y XOR (x OR (NOT z)))
     END FUNCTION

'*******************************************************************************
' FF (SUB)
'
' DESCRIPTION:
' MD5's FF procedure
'*******************************************************************************
     Private SUB FF(a AS LONG, _
      BYVAL b AS LONG, _
      BYVAL c AS LONG, _
      BYVAL d AS LONG, _
      BYVAL x AS LONG, _
      BYVAL s AS LONG, _
      BYVAL ac AS LONG)
     DEFLNG TEMPb = AddUnsigned(F(b, c, d), x)
     DEFLNG TEMPa = AddUnsigned(TempB, ac)
     a = AddUnsigned(a, TEMPa)
     a = RotateLeft(a, s)
     a = AddUnsigned(a, b)
     END SUB

'*******************************************************************************
' GG (SUB)
'
' DESCRIPTION:
' MD5's GG procedure
'*******************************************************************************
     Private SUB GG(a AS LONG, _
      BYVAL b AS LONG, _
      BYVAL c AS LONG, _
      BYVAL d AS LONG, _
      BYVAL x AS LONG, _
      BYVAL s AS LONG, _
      BYVAL ac AS LONG)
     DEFLNG TEMPa = AddUnsigned(AddUnsigned(G(b, c, d), x), ac)
     a = AddUnsigned(a, TempA)
     a = RotateLeft(a, s)
     a = AddUnsigned(a, b)
     END SUB

'*******************************************************************************
' HH (SUB)
'
' DESCRIPTION:
' MD5's HH procedure
'*******************************************************************************
     Private SUB HH(a AS LONG, _
      BYVAL b AS LONG, _
      BYVAL c AS LONG, _
      BYVAL d AS LONG, _
      BYVAL x AS LONG, _
      BYVAL s AS LONG, _
      BYVAL ac AS LONG)
     DEFLNG TEMPa = AddUnsigned(AddUnsigned(H(b, c, d), x), ac)
     a = AddUnsigned(a, TempA)
     a = RotateLeft(a, s)
     a = AddUnsigned(a, b)
     END SUB

'*******************************************************************************
' II (SUB)
'
' DESCRIPTION:
' MD5's II procedure
'*******************************************************************************
     Private SUB II(a AS LONG, _
      BYVAL b AS LONG, _
      BYVAL c AS LONG, _
      BYVAL d AS LONG, _
      BYVAL x AS LONG, _
      BYVAL s AS LONG, _
      BYVAL ac AS LONG)
     DEFLNG TEMPa = AddUnsigned(AddUnsigned(MD5I(b, c, d), x), ac)
     a = AddUnsigned(a, TempA)
     a = RotateLeft(a, s)
     a = AddUnsigned(a, b)
     END SUB

'*******************************************************************************
' ConvertToWordArray (FUNCTION)
'
' PARAMETERS:
' (In/Out) - sMessage - String - String message
'
' RETURN VALUE:
' Long() - Converted message as long array
'
' DESCRIPTION:
' Takes the string message and puts it in a long array with padding according to
' the MD5 rules.
'*******************************************************************************
     CONST MODULUS_BITS      AS LONG = 512
     CONST CONGRUENT_BITS    AS LONG = 448
'DIM WordArray(2) AS LONG
'Dim lWordArray(2)   As Long
     DIM WordArray(255)    AS LONG
     DIM lWordArray(255)   AS LONG
     DIM lWordCount        AS LONG

     Private FUNCTION ConvertToWordArray(sMessage AS STRING) AS LONG
     DIM lMessageLength  AS LONG
     DIM lNumberOfWords  AS LONG

     DIM lBytePosition   AS LONG
     DIM lByteCount      AS LONG
     DIM mI              AS LONG
     DIM tmp             AS INTEGER

     lMessageLength = LEN(sMessage)

    ' Get padded number of words. Message needs to be congruent to 448 bits,
    ' modulo 512 bits. If it is exactly congruent to 448 bits, modulo 512 bits
    ' it must still have another 512 bits added. 512 bits = 64 bytes
    ' (or 16 * 4 byte words), 448 bits = 56 bytes. This means lMessageSize must
    ' be a multiple of 16 (i.e. 16 * 4 (bytes) * 8 (bits))
     lNumberOfWords = (((lMessageLength + _
      ((MODULUS_BITS - CONGRUENT_BITS) \ BITS_TO_A_BYTE)) \ _
      (MODULUS_BITS \ BITS_TO_A_BYTE)) + 1) * _
      (MODULUS_BITS \ BITS_TO_A_WORD)

     REDIM lWordArray(lNumberOfWords - 1) AS LONG
     FOR tmp = 0 TO (lNumberOfWords - 1) : lWordArray(tmp) = 0 : NEXT tmp
    ' Combine each block of 4 bytes (ascii code of character) into one long
    ' value and store in the message. The high-order (most significant) bit of
    ' each byte is listed first. However, the low-order (least significant) byte
    ' is given first in each word.
     lBytePosition = 0
     lByteCount = 0
     DO
        ' Each word is 4 bytes
      lWordCount = lByteCount \ BYTES_TO_A_WORD

        ' The bytes are put in the word from the right most edge
      lBytePosition = (lByteCount MOD BYTES_TO_A_WORD) * BITS_TO_A_BYTE
      lWordArray(lWordCount) = lWordArray(lWordCount) OR LShift(ASC(MID$(sMessage, lByteCount + 1, 1)), lBytePosition)
      lByteCount = lByteCount + 1
     LOOP UNTIL lByteCount >= lMessageLength

    ' Terminate according to MD5 rules with a 1 bit, zeros and the length in
    ' bits stored in the last two words
     lWordCount = lByteCount \ BYTES_TO_A_WORD

     lBytePosition = (lByteCount MOD BYTES_TO_A_WORD) * BITS_TO_A_BYTE

    ' Add a terminating 1 bit, all the rest of the bits to the end of the
    ' word array will default to zero
     lWordArray(lWordCount) = lWordArray(lWordCount) OR _
      LShift(&H80, lBytePosition)

    ' We put the length of the message in bits into the last two words, to get
    ' the length in bits we need to multiply by 8 (or left shift 3). This left
    ' shifted value is put in the first word. Any bits shifted off the left edge
    ' need to be put in the second word, we can work out which bits by shifting
    ' right the length by 29 bits.

     lWordArray(lNumberOfWords - 2) = LShift(lMessageLength, 3)

     lWordArray(lNumberOfWords - 1) = RShift(lMessageLength, 29)
     REDIM WordArray(LBOUND(lWordArray) TO UBOUND(lWordArray)) AS LONG
     FOR mI = LBOUND(WordArray) TO UBOUND(WordArray)
      WordArray(mI) = lWordArray(mI)
     NEXT

     END FUNCTION

'*******************************************************************************
' WordToHex (FUNCTION)
'
' PARAMETERS:
' (In) - lValue - Long - Long value to convert
'
' RETURN VALUE:
' String - Hex value to return
'
' DESCRIPTION:
' Takes a long integer and due to the bytes reverse order it extracts the
' individual bytes and converts them to hex appending them for an overall hex
' value
'*******************************************************************************


     Private FUNCTION WordToHex(BYVAL lValue AS LONG) AS STRING
     DIM lByte AS LONG
     DIM lCount AS LONG
     DIM TEMPSTR AS STRING

     TEMPSTR = ""
     FOR lCount = 0 TO 3

      lByte = RShift(lValue, lCount * BITS_TO_A_BYTE) AND m_lOnBits(BITS_TO_A_BYTE - 1)
      TEMPSTR = TEMPSTR + RIGHT$("0" + HEX$(lByte), 2)
     NEXT
     Result = TEMPSTR

     END FUNCTION

'*******************************************************************************
' MD5 (FUNCTION)
'
' PARAMETERS:
' (In/Out) - sMessage - String - String to be digested
'
' RETURN VALUE:
' String - The MD5 digest
'
' DESCRIPTION:
' This function takes a string message and generates an MD5 digest for it.
' sMessage can be up to the VB string length limit of 2^31 (approx. 2 billion)
' characters.
'
' NOTE: Due to the way in which the string is processed the routine assumes a
' single byte character set. VB passes unicode (2-byte) character strings, the
' ConvertToWordArray function uses on the first byte for each character. This
' has been done this way for ease of use, to make the routine truely portable
' you could accept a byte array instead, it would then be up to the calling
' routine to make sure that the byte array is generated from their string in
' a manner consistent with the string type.
'*******************************************************************************
     CONST S11 AS LONG = 7
     CONST S12 AS LONG = 12
     CONST S13 AS LONG = 17
     CONST S14 AS LONG = 22
     CONST S21 AS LONG = 5
     CONST S22 AS LONG = 9
     CONST S23 AS LONG = 14
     CONST S24 AS LONG = 20
     CONST S31 AS LONG = 4
     CONST S32 AS LONG = 11
     CONST S33 AS LONG = 16
     CONST S34 AS LONG = 23
     CONST S41 AS LONG = 6
     CONST S42 AS LONG = 10
     CONST S43 AS LONG = 15
     CONST S44 AS LONG = 21
     DIM x(2) AS LONG

     FUNCTION MD5(sMessage AS STRING) AS STRING
      DIM k   AS LONG
      DIM AA  AS LONG
      DIM BB  AS LONG
      DIM CC  AS LONG
      DIM DD  AS LONG
      DIM a   AS LONG
      DIM b   AS LONG
      DIM c   AS LONG
      DIM d   AS LONG
      DIM mI  AS LONG
    ' Steps 1 and 2.  Append padding bits and length and convert to words

      ConvertToWordArray(sMessage)

      REDIM x(LBOUND(WordArray) TO UBOUND(WordArray)) AS LONG
      FOR mI = LBOUND(WordArray) TO UBOUND(WordArray)
       x(mi) = WordArray(mi) 'TODO
      NEXT

    ' Step 3.  Initialise
      a = &H67452301
      b = &HEFCDAB89
      c = &H98BADCFE
      d = &H10325476

    ' Step 4.  Process the message in 16-word blocks
      FOR k = 0 TO UBOUND(x) STEP 16
       AA = a
       BB = b
       CC = c
       DD = d


        ' The hex number on the end of each of the following procedure calls is
        ' an element from the 64 element table constructed with
        ' T(i) = Int(4294967296 * Abs(Sin(i))) where i is 1 to 64.
        '
        ' However, for speed we don't want to calculate the value every time.
       FF a, b, c, d, x(k + 0), S11, &HD76AA478

       FF d, a, b, c, x(k + 1), S12, &HE8C7B756
       FF c, d, a, b, x(k + 2), S13, &H242070DB
       FF b, c, d, a, x(k + 3), S14, &HC1BDCEEE
       FF a, b, c, d, x(k + 4), S11, &HF57C0FAF
       FF d, a, b, c, x(k + 5), S12, &H4787C62A
       FF c, d, a, b, x(k + 6), S13, &HA8304613
       FF b, c, d, a, x(k + 7), S14, &HFD469501
       FF a, b, c, d, x(k + 8), S11, &H698098D8
       FF d, a, b, c, x(k + 9), S12, &H8B44F7AF
       FF c, d, a, b, x(k + 10), S13, &HFFFF5BB1
       FF b, c, d, a, x(k + 11), S14, &H895CD7BE
       FF a, b, c, d, x(k + 12), S11, &H6B901122
       FF d, a, b, c, x(k + 13), S12, &HFD987193
       FF c, d, a, b, x(k + 14), S13, &HA679438E
       FF b, c, d, a, x(k + 15), S14, &H49B40821


       GG a, b, c, d, x(k + 1), S21, &HF61E2562
       GG d, a, b, c, x(k + 6), S22, &HC040B340
       GG c, d, a, b, x(k + 11), S23, &H265E5A51
       GG b, c, d, a, x(k + 0), S24, &HE9B6C7AA
       GG a, b, c, d, x(k + 5), S21, &HD62F105D
       GG d, a, b, c, x(k + 10), S22, &H2441453
       GG c, d, a, b, x(k + 15), S23, &HD8A1E681
       GG b, c, d, a, x(k + 4), S24, &HE7D3FBC8
       GG a, b, c, d, x(k + 9), S21, &H21E1CDE6
       GG d, a, b, c, x(k + 14), S22, &HC33707D6
       GG c, d, a, b, x(k + 3), S23, &HF4D50D87
       GG b, c, d, a, x(k + 8), S24, &H455A14ED
       GG a, b, c, d, x(k + 13), S21, &HA9E3E905
       GG d, a, b, c, x(k + 2), S22, &HFCEFA3F8
       GG c, d, a, b, x(k + 7), S23, &H676F02D9
       GG b, c, d, a, x(k + 12), S24, &H8D2A4C8A

       HH a, b, c, d, x(k + 5), S31, &HFFFA3942
       HH d, a, b, c, x(k + 8), S32, &H8771F681
       HH c, d, a, b, x(k + 11), S33, &H6D9D6122
       HH b, c, d, a, x(k + 14), S34, &HFDE5380C
       HH a, b, c, d, x(k + 1), S31, &HA4BEEA44
       HH d, a, b, c, x(k + 4), S32, &H4BDECFA9
       HH c, d, a, b, x(k + 7), S33, &HF6BB4B60
       HH b, c, d, a, x(k + 10), S34, &HBEBFBC70
       HH a, b, c, d, x(k + 13), S31, &H289B7EC6
       HH d, a, b, c, x(k + 0), S32, &HEAA127FA
       HH c, d, a, b, x(k + 3), S33, &HD4EF3085
       HH b, c, d, a, x(k + 6), S34, &H4881D05
       HH a, b, c, d, x(k + 9), S31, &HD9D4D039
       HH d, a, b, c, x(k + 12), S32, &HE6DB99E5
       HH c, d, a, b, x(k + 15), S33, &H1FA27CF8
       HH b, c, d, a, x(k + 2), S34, &HC4AC5665

       II a, b, c, d, x(k + 0), S41, &HF4292244
       II d, a, b, c, x(k + 7), S42, &H432AFF97
       II c, d, a, b, x(k + 14), S43, &HAB9423A7
       II b, c, d, a, x(k + 5), S44, &HFC93A039
       II a, b, c, d, x(k + 12), S41, &H655B59C3
       II d, a, b, c, x(k + 3), S42, &H8F0CCC92
       II c, d, a, b, x(k + 10), S43, &HFFEFF47D
       II b, c, d, a, x(k + 1), S44, &H85845DD1
       II a, b, c, d, x(k + 8), S41, &H6FA87E4F
       II d, a, b, c, x(k + 15), S42, &HFE2CE6E0
       II c, d, a, b, x(k + 6), S43, &HA3014314
       II b, c, d, a, x(k + 13), S44, &H4E0811A1
       II a, b, c, d, x(k + 4), S41, &HF7537E82
       II d, a, b, c, x(k + 11), S42, &HBD3AF235
       II c, d, a, b, x(k + 2), S43, &H2AD7D2BB
       II b, c, d, a, x(k + 9), S44, &HEB86D391


       a = AddUnsigned(a, AA)
       b = AddUnsigned(b, BB)
       c = AddUnsigned(c, CC)
       d = AddUnsigned(d, DD)


      NEXT
    ' Step 5.  Output the 128 bit digest
      result = LCASE$(WordToHex(a) & WordToHex(b) & WordToHex(c) & WordToHex(d))
     END FUNCTION
'Class_initialize
     $OPTION WEAKTYPE OFF
     $OPTION VBDLL    OFF

掌柜推荐
 
 
¥289.00 ·
 
 
¥1,080.00 ·
 
 
¥1,380.00 ·
 
 
¥638.00 ·
 
 
¥1,290.00 ·
 
 
¥1,420.00 ·
© Sun 2024-11-24  Guidance Laboratory Inc.
Email:webmaster1g.yi.org Hits:0 Last modified:2013-08-20 12:34:47